
Some Steps into Verification
of Exact Real Arithmetic

Norbert Müller / Christian Uhrhan

Universität Trier / Universität Siegen
Germany

Idea behind the iRRAM

1 Idea behind the iRRAM

2 Verification approach

3 From C++ to C

4 Example

5 Work in progress

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 1 / 15

Idea behind the iRRAM

exact real arithmetic: ‘approximating’ approach

REAL z = power(”0.33333333” , 3);

REAL power(const REAL& x, int n) {
REAL y=1;
for (int k=0; k<n; k=k+1)

{ y=x*y; }
return y;

}

y
x k=0

[0.332,0.334] [0.999,1.001]

k=1

y

*
y

[0.999,1.001]

*[0.32,0.34]

y k=2

*
y

*[0.0,0.1]

[0.32,0.34]

y k=3

y

**[-1.0,2.0]

[0.0,0.1]

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 2 / 15

Idea behind the iRRAM

exact real arithmetic: ‘approximating’ approach

REAL z = power(”0.33333333” , 3);

REAL power(const REAL& x, int n) {
REAL y=1;
for (int k=0; k<n; k=k+1)

{ y=x*y; }
return y;

}

y
x k=0

[0.9999999,1.0000001][0.3333332,0.3333334]

k=1

y

*
y

*

[0.9999999,1.0000001]

[0.333332,0.333334]

y k=2

*
y

*[0.11110,0.11112]

[0.333332,0.333334]

y k=3

y

**[0.0370,0.0371]

[0.11110,0.11112]

iteration of computations!

‘Exceptions’ are the rule...

data structures behind REAL variables ...
... represent only approximations

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 3 / 15

Verification approach

1 Idea behind the iRRAM

2 Verification approach

3 From C++ to C

4 Example

5 Work in progress

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 4 / 15

Verification approach

work in progress: verification of fast real arithmetic in C++...
... but verifying C++ is hard...

Two objectives:

internal use: verify correctness of the iRRAM package
external use: develop verification tools for the user

Current approach based on verification of C:

use ACSL to specify semantics
use FRAMA-C (with Jessie and WHY) to translate to coq

use coqide to write proofs...

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 5 / 15

Verification approach

Approach in 4 levels:

1 core level

; verify arithmetic for arbitrarily precise floating point numbers
(mainly internal use)

2 interval level

; verify special interval arithmetic
(mainly internal use)

3 basic arithmetic level

; verify basic operations on real numbers
(mainly internal use)

4 application level

; verify non-basic operations and user tools
(mainly external use)

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 6 / 15

From C++ to C

1 Idea behind the iRRAM

2 Verification approach

3 From C++ to C

4 Example

5 Work in progress

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 7 / 15

From C++ to C

constructors / destructors.
Operator overloading: x*y*z instead of mul(mul(x,y),z)

1 / / C++ version
2 f r iend REAL operator ∗ (const REAL& x , const REAL& y) ;
3 f r iend REAL operator ∗ (const REAL& x , const i n t& y) ;

1 / / t rans la t ion to C
2

3 REAL REALREAL_mul(REAL x , REAL y) ;
4 REAL REALint_mul (REAL x , i n t y) ;

exceptions: z=x*y can be modeled

1 {REAL tmp = REALREAL_mul (x , y) ;
2 i f (exception != 0) return 0; z=tmp ; }

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 8 / 15

Example

1 Idea behind the iRRAM

2 Verification approach

3 From C++ to C

4 Example

5 Work in progress

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 9 / 15

Example

Example: power xn with x ∈ R and n ∈ N, n ≥ 0.

A working implementation in the iRRAM is:

1 REAL power (const REAL& x , i n t n) {
2 REAL y=1;
3 for (i n t k=0; k<n; k=k+1) { y=y∗x ; }
4 return y ;
5 }

Translated to C we get:

1 REAL REALint_power (const REAL x , i n t n) {
2 REAL y ;
3 { REAL tmp = REAL_from_int32 (1) ;
4 i f (exception != 0) return 0; y=tmp ; }
5 for (i n t k=0;k<n; k=k+1)
6 { REAL tmp = REALREAL_mul(y , x) ;
7 i f (exception != 0) return 0; y=tmp ; }
8 return y ;
9 }

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 10 / 15

Example

Example: power xn with x ∈ R and n ∈ N, n ≥ 0.

1 /∗ " function contract " for power of rea l numbers (leve l 4) ∗ /
2 /∗@
3 requires valid_REAL (x) && n >= 0;
4 assigns exception ;
5 ensures exception==0 ==> (valid_REAL (\ resul t) &&
6 real_of_iRRAM_REAL (\ resul t) ==
7 \pow(real_of_iRRAM_REAL (x) , n)) ;
8 ∗ /
9 REAL REALint_power (const REAL x , i n t n) ;

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 11 / 15

Example

‘trivial’ loop invariant in ACSL:

1 /∗@
2 loop invar iant valid_REAL (y) && 0 <= k <= n &&
3 real_of_iRRAM_REAL (y) == \pow(real_of_iRRAM_REAL (x) , k) ;
4 loop var iant n−k ;
5 ∗ /
6 for (i n t k=0;k<n; k=k+1)
7 { REAL tmp = REALREAL_mul(y , x) ;
8 i f (exception != 0) return 0; y=tmp ; }

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 12 / 15

Work in progress

1 Idea behind the iRRAM

2 Verification approach

3 From C++ to C

4 Example

5 Work in progress

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 13 / 15

Work in progress

as far as possible: automate translation of C++ to C

introduce fast (and verified) datatype for Z
readjust specifications/proofs of the different levels

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 14 / 15

Work in progress

Thank you for your attention!

Any questions or remarks?

Christian Uhrhan (Universität Siegen) NFM, 2012-04-05 15 / 15

	Idea behind the iRRAM
	Verification approach
	From C++ to C
	Example
	Work in progress

